Invariants of Colored Links and a Property of the Clebsch-gordan Coefficients of U Q (g)

نویسنده

  • TETSUO DEGUCHI
چکیده

Abstract. We show that multivariable colored link invariants are derived from the roots of unity representations of Uq(g). We propose a property of the Clebsch-Gordan coefficients of Uq(g), which is important for defining the invariants of colored links. For Uq(sl2) we explicitly prove the property, and then construct invariants of colored links and colored ribbon graphs, which generalize the multivariable Alexander polynomial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

25 v 1 1 5 O ct 1 99 9 Multiplicity , Invariants and Tensor Product Decompositions of Tame Representations of U ( ∞ )

The structure of r-fold tensor products of irreducible tame representations of U(∞) = lim −→U(n) are described, versions of contragredient representations and invariants are realized, and methods of calculating multiplicities, Clebsch-Gordan and Racah coefficients are given using invariant theory on Bargmann-Segal-Fock spaces. PACS codes: 02.20.Tw, 02.20.QS, 03.65.Fd

متن کامل

N ov 2 00 7 Basic Hypergeometric Functions and Covariant Spaces for Even Dimensional Representations of

Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and it is observed that they may be ex...

متن کامل

9 J an 2 00 7 Representations of U q [ osp ( 1 / 2 ) ] and Basic Hypergeometric Functions

Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and it is observed that they may be ex...

متن کامل

Computing Generalized Racah and Clebsch-Gordan Coefficients for U(N) groups

After careful introduction and discussion of the concepts involved, procedures are developed to compute Racah and Clebsch-Gordan coefficients for general r-fold tensor products of the U(N) groups. In the process, the multiplicity of a given irreducible representation (irrep) in the direct sum basis is computed, and generalized Casimir operators are introduced to uniquely label the multiple irre...

متن کامل

A Calculus for Su(3) Leading to an Algebraic Formula for the Clebsch-gordan Coefficients

ABSTRACT: We develop a simple computational tool for SU(3) analogous to Bargmann’s calculus for SU(2). Crucial new inputs are, (i) explicit representation of the Gelfand-Zetlin basis in terms of polynomials in four variables and positive or negative integral powers of a fifth variable (ii) an auxiliary Gaussian measure with respect to which the Gelfand-Zetlin states are orthogonal but not norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992